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Phase space, quantum blobs
and squeezed coherent states

I Quantum blobs1 are the smallest phase space units of phase space
compatible with the uncertainty principle of quantum mechanics;

I Quantum blobs are in a bijective correspondence with the squeezed
coherent states2 from standard quantum mechanics, of which they
are a phase space picture;

I Quantum blobs have the symplectic group as group of symmetries;

I Thus: blobs (aka squeezed states) are a family invariant under
quadratic Hamiltonians, which transform them geomentrically, that
is by a change of variables.

Question: Do we have other states transformed geometrically by
quadratic Hamiltonians?
Answer (well-known, yet will be revised): For the harmonic
oscillator any state is moving geometrically in the phase space.

1M. A. d. Gosson, “Quantum Blobs”, 2013.
2Gazeau, Coherent States in Quantum Physics, 2009; M. d. Gosson, Symplectic

Geometry and Quantum Mechanics, 2006.



Ladder Operators
and the Hermite functions

Let P and Q satisfy CCR: [Q,P] = i hI of the Weyl algebra h1. Consider
complexification of h1 and define operators:

a± =

√
mω

2 h

(
Q∓ i

mω
P

)
, then [a−,a+] = 1. (1)

For a solution |0〉 of a− |0〉 = 0 we define |n〉 = (πnn!)−1/2(a+)n |0〉, then:

1. (a−)∗ = a+ on L2(R).

2. The name ladder operators is explained by the diagram:

|0〉 a+
// |1〉

a−
oo

a+
// |2〉

a−
oo

a+
// |3〉

a−
oo

a+
// . . .

a−
oo

Since
(a−) |n〉 = −(πn)1/2 |n− 1〉, (a+) |n〉 = (π(n+ 1))1/2 |n+ 1〉

3. Orthonormality: 〈n|k〉 = δnk.



Ladder Operators
and representation theory

The above construction relays on CCR: [Q,P] = i hI or [a−,a+] = 1 only.
No specific realisation is assumed. Conclusions:

I There are different vacuums |0〉 (that is a− |0〉 = 0) for different mω.

I Any normalised vacuum |0〉 creates the orthonormal basis { |n〉 }n of
an irreducible invariant space.

I Any two irreducible spaces are isomorphic by |n〉 → |n〉 ′.
I Thus, it provides the (constructive!) proof of the Stone-von

Neumann theorem on the uniqueness of representation of CCG.

Remark 1.

I There is no genuinely “non-squeezed” states, they are all squeezed in
a different way.

I All vacuums are minimising uncertainty ∆Q · ∆P(>  h
2 ).

I Obviously, this approach inspired Bargmann to produce
classification of UIRs of SL2(R).



Ladder Operators
and quantum harmonic oscillator

Hamiltonian of the harmonic oscillator.

H =
 hω

2
(a+a− + a−a+) =  hω(a+a− + 1

2) =
1

2m
P2 +

mω2

2
Q2. (2)

Using identities in 2 we obtain spectral decomposition

H |n〉 =  hω(n+ 1
2) |n〉 .

1. The spectrum of the harmonic oscillator is discrete.

2. The eigenfunctions are provided by the |n〉.
3. The ladder operators acts on the spectrum by a shift  hω due to the

commutation relation [H,a±] = 2a±:

H(a+ |k〉) = (a+H+ 2a+) |k〉 = a+(H |k〉) + 2a+ |k〉
= (2k+ 1)a+ |k〉+ 2a+ |k〉 = (2k+ 3)a+ |k〉 .



Hamiltonian from Ladder Operators
pros and contras

I Representation independent.

I Inspired ladder technique for other Hamiltonians, e.g. hydrogen
atom by Schrödinger or resent works in SUSY QM.

I Time evolution of an arbitrary superposition
∑
an |n〉 is∑

e−iω(n+1/2)tan |n〉.
I In configuration space (the Schrödinger model) the dynamic is a

Gauss-type (quadratic Fourier) integral transform.

I There is a specific space—Fock–Segal–Bargmann (FSB)
space—which makes the dynamic geometric.



Harmonic oscillator
in FSB representation

Using the displacement operator D(z) = e(z̄a
++za−)/2 = exQ+yP,

z = mωx+ iy (the representation of the Heisenberg group, in fact) we
create the coherent states |z〉 = D(z) |0〉 and the coherent state transform:

W : f 7→ f(z) = 〈f|z〉 (3)

The image—the Fock–Segal–Bargmann space—consists of analytic
functions on C. Hamiltonian of the harmonic oscillator:

H =
1

2m
(dσ̃xh)

2 +
mω2

2
(dσ̃yh)

2 (4)

=
1

2m
∂2
xx +

mω2

2
∂2
yy

+ iπh
(
mω2x∂y − 1

my∂x
)
− π2h2

(
mω2

2 x2 + 1
2my

2
)

.

The oscillator’s dynamics in FSB space is geometric rotation:
At : f(z) 7→ e−π

 h(iωt−mωy2−x2/(mω)) f(e−2πi hωtz)
despite of the presence of the second derivatives!



Harmonic oscillator
a solution in FSB space

The mystery resolved:3

Functions in FSB transform are analytic functions of the variable
z = mωx+ iy, thus the second order “Laplacian”

1

2m
∂2
xx +

mω2

2
∂2
yy

vanishes on FSB space.
The key element:
the representation on the phase space is reducible, giving the room for an
additional condition(s), e.g. analyticity, to specify vectors from the
irreducible component.
Question: Are their other examples of a geometric dynamic?

3Almalki and Kisil, “Geometric Dynamics of a Harmonic Oscillator,
Non-Admissible Mother Wavelets and Squeezed States”, 2018.



The shear Lie algeba
just one nilpotency step away from the Heisenberg–Weyl

Let a be the three-step nilpotent Lie algebra whose basic elements
{X1,X2,X3,X4} with the following non-vanishing commutators4:5

[X1,X2] = X3, [X1,X3] = X4. (5)

Obviously, {X1,X3,X4} is the Heisenberg–Weyl algebra. We will
systematicaly employ this inclusion to save our calculations.
The algebra a and respective Lie group—the shear group (aka quartic
group6 or Engel group7)—is a toy model to try any generalisations8.9

4Corwin and Greenleaf, Representations of Nilpotent Lie Groups and Their
Applications. Part I, 1990.

5Kirillov, Lectures on the Orbit Method, 2004.
6Klink, “Nilpotent Groups and Anharmonic Oscillators”, 1994.
7Ardentov and Sachkov, “Maxwell Strata and Cut Locus in the Sub-Riemannian

Problem on the Engel Group”, 2017.
8Howe, Ratcliff, and Wildberger, “Symbol Mappings for Certain Nilpotent Groups”,

1984.
9I. Beltiţă, D. Beltiţă, and Pascu, “Boundedness for Pseudo-Differential Calculus on

Nilpotent Lie Groups”, 2013.



The shear group
including the Heisenberg group

The corresponding Lie group is a three-step nilpotent A and the group
law is given by:

(x1, x2, x3, x4)(y1,y2,y3,y4) = (x1 + y1, x2 + y2, x3 + y3 + x1y2, (6)

x4 + y4 + x1y3 +
1
2x

2
1y2),

where xj, yj ∈ R and the canonical coordinates are
(x1, x2, x3, x4) := exp(x4X4) exp(x3X3) exp(x2X2) exp(x1X1). The identity
element is (0, 0, 0, 0) and the inverse of an element (x1, x2, x3, x4) is

(−x1,−x2, x1x2 − x3, x1x3 −
1

2
x2

1x2 − x4).

The group centre is

Z(A) = {(0, 0, 0, x4) ∈ A : x4 ∈ R}.

The Heisenberg group H is isomorphic to the subgroup

H̃ = {(x1, 0, x3, x4) ∈ A : xj ∈ R} by (x,y, s) 7→ (x, 0,y, s), (x,y, s) ∈ H .
(7)



The shear group and Schrödinger group
The Schrödinger group is the semi-direct product S = H oA SL2(R),
where SL2(R) is the group of all 2× 2 real matrices with the unit
determinant. The action A of SL2(R) on H is given by:10

A(g) : (x,y, s) 7→ (ax+ by, cx+ dy, s), (8)

where g =

(
a b

c d

)
∈ SL2(R) and (x,y, s) ∈ H. Let

N =

{(
1 0
x 1

)
, x ∈ R

}
be the subgroup of SL2(R), it is easy to check that A is isomorphic to the
subgroup H oA N of S through the map:

(x1, x2, x3, x4) 7→ ((x1, x3, x4),n(x2)) ∈ H oA N,

where (x1, x3, x4) ∈ H and n(x2) :=

(
1 0

−x2 1

)
∈ SL2(R).

10M. A. d. Gosson, Symplectic Methods in Harmonic Analysis and in Mathematical
Physics, 2011; Folland, Harmonic Analysis in Phase Space, 1989.



The shear group and Schrödinger group

q

p

q

p

Geometrically: shear transform with the angle tan−1 x2:

n(x2)(x1, x3) :=

(
1 0

−x2 1

)(
x1

x3

)
=

(
x1

−x2x1 + x3

)
. (9)

Physically, for a particle with coordinate x3 and the constant velocity x1:
after a period of time −x2 the particle will still have the velocity x1 but
its new coordinate will be x3 − x2x1.



UIR of the shear group
induction and the Kirillov’s orbit method

Classification of UIRs of the shear group is nicely accomplished by the
Kirillov’s orbit method (by Kirillov himself11 :-) and UIRs are explicitly
constructed by the Mackey induction procedure.
Avoiding details, the main set of UIRs is parametrised by by two “Planck
constants”  h2 and  h4 and induced by the character
χ h2 h2(0, x2, x3, x4) = e2π( h2x2+ h4x4) of the maximal abelian sungroup
Ha = {(0, x2, x3, x4)} in L2(R) is:12

[ρ h2 h4
(x1, x2, x3, x4)f](x

′
1) = e2πi( h2x2+ h4(x4−x3x

′
1+

1
2x2x

′2
1 ))f(x ′1−x1). (10)

This representation is irreducible since its restriction to the Heisenberg
group H̃ coincides with the irreducible Schrödinger representation with
 h4 being the Planck constant.

11Kirillov, Lectures on the Orbit Method, 2004, § 3.2.
12Ibid., 2004, § 3.3, (19).



Coherent state transform
aka voice transform, wavelet transform, etc.

For a G, ρ and a fixed mother wavelet φ ∈ H, the wavelet transform13 is:

[W
ρ
φf](g) =

〈
ρ(g−1)f,φ

〉
= 〈f, ρ(g)φ〉 , g ∈ G.

Let a mother wavelet φ be a joint eigenvector of ρ(h) for all h ∈ H:

ρ(h)φ = χ(h)φ for all h ∈ H. (11)

and a character χ of H. Then

[W
ρ
φf](gh) = χ(h)[W

ρ
φf](g). (12)

Thus the restriction of the left regular representation Λ (intertwined with
ρ by W

ρ
φ) is induced by χ. For a section s : G/H→ G, and φ

satisfying (11), induced wavelet transform14 W
ρ
φ is

[W
ρ
φf](x) = 〈f, ρ(s(x))φ〉, x ∈ G/H . (13)

13Ali, Antoine, and Gazeau, Coherent states, wavelets, and their generalizations,
2014.

14Kisil, “Erlangen Programme at Large: an Overview”, 2012; Kisil, “Symmetry,
Geometry, and Quantization with Hypercomplex Numbers”, 2017.



Coherent state transform
for the shear group

For H = {(0, 0, 0, x4) ∈ A : x4 ∈ R} and the character
χ(0, 0, 0, x4) = e2πi h4x4 any function φ ∈ L2(R) satisfies the eigenvector
property (11). Thus, for the respective homogeneous space A/Z ∼ R3 and
the section s : A/Z→ A; s(x1, x2, x3) = (x1, x2, x3, 0) the induced wavelet
transform is:

[Wφf](x1, x2, x3) = 〈f, ρ h2 h4
(s(x1, x2, x3))φ〉 (14)

=

∫
R
f(y)e−2πi( h2x2+ h4(−x3y+

1
2x2y

2))φ(y− x1) dy

= e−2πi h2x2

∫
R
f(y)e−2πi h4(−x3y+

1
2x2y

2)φ(y− x1) dy.

For the Heisenberg group (x2 = 0) it is Fourier–Wigner transform.15

For the share group it is the quadratic Fourier transform or the Gauss
integral transform.16

15Folland, Harmonic Analysis in Phase Space, 1989.
16Neretin, Lectures on Gaussian Integral Operators and Classical Groups, 2011;

M. A. d. Gosson, Symplectic Methods in Harmonic Analysis and in Mathematical
Physics, 2011.



CST on the shear group
non-square-integrability, is it an issue?

For a fixed unit vector φ ∈ L2(R), let Lφ(A/Z) be the image space of the
wavelet transform Wφ (14) equipped with the family of inner products
parametrised by x2 ∈ R

〈u, v〉x2 :=

∫
R2
u(x1, x2, x3) v(x1, x2, x3)  h4 dx1dx3 . (15)

The respective norm is denoted by ‖u‖x2 .
Wφ is unitary map H → Lφ(A/Z), ‖·‖x2 , furthermore we have the
orthogonality relation:〈

Wφ1f1,Wφ2f2
〉
x2

= 〈f1, f2〉 〈φ1,φ2〉 for any x2 ∈ R . (16)

Then its adjoint:

[Mφ(x2)f](t) =

∫
R2
f(x1, x2, x3)ρ(x1, x2, x3, 0)φ(t)  h4 dx1 dx3. (17)

is its inverse: Mψ(x2) ◦Wφ = 〈ψ,φ〉 I if 〈ψ,φ〉 = 1.



Characterisation of CST image
and Lie derivatives

For the right shift R(g) : f(g ′) 7→ f(g ′g) , the covariant transform
intertwines R(g) with the action ρ on vacuum states:

R(g) ◦Wφ = Wρ(g)φ. (cf. Λ(g) ◦Wφ = Wφ ◦ ρ(g)). (18)

Let ρ be a UIR of G, which can be extended17 by integration to a vector
space V of functions or distributions on G. If φ ∈ H satisfy the

ρ(a)φ = 0, where ρ(a)φ =

∫
G

a(g) ρ(g)φ dg = 0,

for a fixed distribution a(g) ∈ V. Then any wavelet transform
ṽ(g) = 〈v, ρ(g)φ〉 obeys the condition:18

R(ā)v = 0, where R(ā) =

∫
G

ā(g)R(g) dg , (19)

with R being the right regular representation of G.
17Feichtinger and Gröchenig, “Banach spaces related to integrable group

representations and their atomic decompositions. I”, 1989.
18Kisil, “Erlangen Programme at Large: an Overview”, 2012; Kisil, “The Real and

Complex Techniques in Harmonic Analysis from the Point of View of Covariant
Transform”, 2014.



The shear group CST
image characterisation: strucutural condition

The derived representations of the basis {X1,X2,X3,X4} of a are:

dρX1
 h2 h4

= − d
dy ; dρX2

 h2 h4
= 2πi h2 + πi h4y

2; dρX3
 h2 h4

= −2πi h4y; (20)

Lie derivative LX is the derived right regular representation:

LX1 = ∂1; LX2 = ∂2 + x1∂3 − iπ h4x
2
1I; LX3 = ∂3 − 2πi h4x1I; (21)

Any function φ satisfies the relation for the derived representation(
(dρX3

 h2 h4
)2 − 4πi h4 dρX2

 h2 h4
− 8π2 h2 h4I

)
φ = 0.

The image f ∈ Lφ(A/Z) of the wavelet transform Wφ is annihilated by
the respective Lie derivatives operator Sf = 0 where

S = (LX3)2 + 4πi h4L
X2 − 8π2 h2 h4I (22)

= ∂2
33 + 4πi h4∂2 − 8π2 h2 h4I .

This will be called the structural condition because it is determined by
the structure of the particular representation ρ h2 h4

(10).



The shear group CST
image characterisation: the Gaussian

A particular choice of a mother wavelet φ such that φ lies in L2(R) and
is a null solution to the “first order” operator, cf. (20):

dρX1+aX2+iEX3
 h2 h4

= dρX1
 h2 h4

+ a dρX2
 h2 h4

+ iE dρX3
 h2 h4

, (23)

where a and E some real constants. It is clear that, the function

φ(y) = exp

(
πia h4

3
y3 + πE h4y

2 + 2πia h2y

)
,

is a generic solution and square integrability of φ requires that E h4 is
strictly negative. Furthermore, for the purpose of this work it is sufficient
to use the simpler mother wavelet corresponding to the value a = 0:

φ(y) = eπE
 h4y

2
,  h4 > 0, E < 0. (24)

If a 6= 0 then we obtain Airy beam decomposition (cubic Fourier
transform).19

19Torre, “A Note on the Airy Beams in the Light of the Symmetry Algebra Based
Approach”, 2009.



The shear group CST
image characterisation: the analytic condition

Any function f in Lφ(A/Z) for φ (24) satisfies Cf = 0 for the partial
differential operator produced from (23) with a = 0:

C =
(
LX1 − iELX3

)
= ∂1 − iE∂3 − 2π h4Ex1 . (25)

By peeling (multiplication with a suitable factor) it can be converted into
the Cauchy–Riemann equation, we call (25) the analyticity condition.
The CST (14) with the Gaussian for the Haisenberg group (x2 = 0)
becomes the Fock–Segal–Bargmann transform to analytic function of
z = −Ex1 + ix3.
Since the structural operator S = ∂2

33 + 4πi h4∂2 − 8π2 h2 h4I (22) is a
Schrödinger equation of a free particle (with x2 being time) we get
Physical characterisation of Lφ(A/Z): consists of wavefunctions

expanded from the phase space R2 to R2 × R by free time-evolution.



Geometric dynamics of HO
from the Heisenberg group

The harmonic oscillator with mass m and frequency ω is quantised

H = 1
2m(idσ̃X1

h )2 + mω2

2 (idσ̃x3h )2 (26)

= − 1
2m∂

2
11 −

mω2

2 ∂2
22 +

2πih
m x3∂1 +

2π2h2

m x2
3

Our aim is dynamics in geometric terms by lowering the order of the
differential operator (26) using the analyticity condition:

H̃ = H+ (A∂1 + iB∂3 + CI)(L
X1 − iELx3)

This requires A = 1
2m , B = −1

2ω, C = −πhωx1 and E = −mω.

H̃ = 2πih
m x3∂1 − 2πihmω2x1∂3 +

(
πhω+ 2π2h2

m (x2
3 −m

2ω2x2
1)
)
I . (27)

The solution is given by the rotation of the complex variable x3 − imωx1.
New observation: the value of E is uniquely defined and the
corresponding vacuum vector φ(q) = eπhEq

2
= e−πhmωq

2
is fixed.



Geometric dynamics of HO
from the shear group

Similarly, the Hamiltonian of HO for the shear group (x2 6= 0) is

H = ( 1
2m(idρ̃X1

 h4
)2 + mω2

2 (idρ̃X3
 h4
)2)

= − 1
2m∂

2
11 −

1
2mx

2
2∂

2
33 −

mω2

2 ∂2
33 −

1
mx2∂

2
13 (28)

+ 2πi h4
m x3∂1 +

2πi h4
m x2x3∂3 −

1
m(−πi h4x2 − 2π2 h2

4x
2
3)I

Adjusting by the analytic (25) and structural (22) conditions:

H1 = H+ (A∂1 + B∂2 + C∂3 + KI)C+ FS .

To eliminate all second order derivatives take A = 1
2m , B = 0,

C = 1
m( i

2E+ x2), K = π h4
m x1(E+ 2ix2). and F = − 1

2m(ix2 − E)
2 + mω2

2 .
Difference with the Heisenberg group: there is no restrictions for the
parameter E, any squeezed states20-21 eπ h4Ey

2
, E < 0 can be mother

wavelet.
20Gazeau, Coherent States in Quantum Physics, 2009.
21M. A. d. Gosson, Symplectic Methods in Harmonic Analysis and in Mathematical

Physics, 2011; M. A. d. Gosson, “Quantum Blobs”, 2013.



Geometric dynamics of HO on the shear group solution
The adjusted Hailtonian is:

H1 = 2πi h4
m

(
(x3 + x1x2)∂1 −

(
(ix2 − E)

2 −m2ω2
)
∂2 − (E2x1 − x2x3)∂3

)
−
π h4

m

(
8iπ h2Ex2 − ix2 + 4π h2x

2
2 − 2π h4x

2
3

+4π h2m
2ω2 + E− 4π h2E

2 + 4iπE h4x
2
1x2 + 2π h4E

2x2
1

)
I .

Using the analyticity condition in the variable z = x3 + iEx1:

f(t, x1, x2, x3) =

√
E+mω√

ix2 + E+mω
(29)

× exp

(
iπωt− π h4Ex

2
1 − 2πi h2x2 − π h4

(x3 − iEx1)
2

ix2 + E+mω

)
× f1

(
e2πiωt x3 − iEx1

ix2 + E+mω
, e4πiωtmω− (ix2 + E)

mω+ (ix2 + E)

)
.

where f1(z,u) is an arbitrary function of two variables such that:
I analytic in the first variable.
I solves heat-like eqn. ∂uf1(z,u) = − 1

8π h4mω
∂2
zzf1(z,u)



The solution: bounds for a possible squeeze

−1 Rc −1 Rc −1 R c

Figure: Shear parameter and analytic continuation. The solid circle is the image
of the line ix2 + E under the Cayley transformation. The shadowed region (the
annulus with radii c and 1) is obtained from the solid circle under rotation
around the origin. The dashed circle of the radius R bounds the domain of the
analytic continuation of the heat equation solution.
Left: E = mω (thus c = 0)—there always exists a part of the shaded region
inside the circle of a radius R (even for R = 0).
Middle: some E within the bound—there is a thick arc inside of the dashed
circle, the arc corresponds to values of x2 with a meaningful solution (29).
Right: a shear parameter E is outside of the range, a state is squeezed too much,
no values of x2 are allowed in (29).
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2006, pp. xx+367.

M. A. de Gosson. Symplectic Methods in Harmonic Analysis and in
Mathematical Physics. Vol. 7. Pseudo-Differential Operators. Theory
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Mathematical Society (EMS), Zürich, 2011, pp. xii+559. url:
http://dx.doi.org/10.4171/080.

A. Torre. “A Note on the Airy Beams in the Light of the Symmetry
Algebra Based Approach”. In: Journal of Optics A: Pure and
Applied Optics 11.12 (2009), p. 125701. url:
http://stacks.iop.org/1464-4258/11/i=12/a=125701.

http://arXiv.org/abs/1611.05650
http://dx.doi.org/10.4171/080
http://stacks.iop.org/1464-4258/11/i=12/a=125701

